x^2+((8.4*10^-4)x)-(8.7*10^-5)=0

Simple and best practice solution for x^2+((8.4*10^-4)x)-(8.7*10^-5)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+((8.4*10^-4)x)-(8.7*10^-5)=0 equation:



x^2+((8.4*10^-4)x)-(8.7*10^-5)=0
We add all the numbers together, and all the variables
x^2+((8.4*10^-4)x)-5-8.7E=0
We calculate terms in parentheses: +((8.4*10^-4)x), so:
(8.4*10^-4)x
We multiply parentheses
84x^2-4x
Back to the equation:
+(84x^2-4x)
We add all the numbers together, and all the variables
x^2+(84x^2-4x)-28.6490519076=0
We get rid of parentheses
x^2+84x^2-4x-28.6490519076=0
We add all the numbers together, and all the variables
85x^2-4x-28.6490519076=0
a = 85; b = -4; c = -28.6490519076;
Δ = b2-4ac
Δ = -42-4·85·(-28.6490519076)
Δ = 9756.67764858
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-\sqrt{9756.67764858}}{2*85}=\frac{4-\sqrt{9756.67764858}}{170} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+\sqrt{9756.67764858}}{2*85}=\frac{4+\sqrt{9756.67764858}}{170} $

See similar equations:

| 9x-6=4x+8 | | 9=b/7 | | 1/4=b/4 | | 20z=180 | | -30-3x=2x-25 | | -8+10w=2w | | 9/z=9 | | 35p=310 | | 91=7c;c=13 | | -3-8x+8=80 | | y/19=1 | | 4(4s+6)=136 | | 7x-20=3(x-2) | | x+1,5x=5000 | | 3(x-5)-4=10 | | 5=2m/4 | | 5(4w+8)=-18 | | -y+10y=+9y | | 8-y=-5 | | z^2-9/5z+81/100=0 | | -22-4x=34+3x | | 23w=56 | | -3|-8x|+8=80 | | 5u-7.7=2.7u+6.56 | | (u-5)*7=28 | | -4x-38=2x+28 | | 4x+15=14x+147 | | 10-5x-8=12 | | 8a=3(2a+5)+6 | | 4(12-x)=15-x | | 13x-3=5x-5 | | x+9=12;x=-3 |

Equations solver categories